Abstract

The DNA cleavage activity of several beta-diketonate vanadyl complexes is examined. Vanadyl acetylacetonate, V(IV)O(acac)(2), 1, shows a remarkable activity in degrading plasmid DNA in the absence of any activating agents, air and photoirradiation. The cleaving activity of several related complexes V(IV)O(hd)(2) (2, Hhd=3,5-heptanedione), V(IV)O(acac-NH(2))(2) (3, Hacac-NH(2)=acetoacetamide) and V(IV)O(acac-NMe(2))(2) (4, Hacac-NMe(2)=N,N-dimethylacetoacetamide) is also evaluated. It is shown that 2 exhibits an activity similar to 1, while 3 and 4 are much less efficient cleaving agents. The different activity of the complexes is related to their stability towards hydrolysis in aqueous solution, which follows the order 1 approximately 2>>3 approximately 4. The nature of the pH buffer was also found to be determinant in the nuclease activity of 1 and 2. In a phosphate buffered medium DNA cleavage by these agents is much more efficient than in tris, hepes, mes or mops buffers. The reaction seems to take place through a mixed mechanism, involving the formation of reactive oxygen species (ROS), namely OH radicals, and possibly also direct cleavage at phosphodiester linkages induced by the vanadium complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.