Abstract

The objective of this research was to create stable nickel nanoparticles using nickel chloride salt and a Schiff base ligand called DPMN. The synthesis process involved a two-step phase transfer procedure. Spectroscopic techniques such as UV-Visible and FT-IR were used to confirm the formation of ligand-stabilized nickel nanoparticles (DPMN-NiNPs). To analyze the size, surface morphology, and quality of DPMN-NiNPs, SEM and TEM techniques were utilized. In vitro studies were performed to investigate the potential anticancer activity of the synthesized compounds against three different cancer cell lines and one normal cell line, and the results were compared to those of cis-platin. The researchers also conducted tests to determine the ability of DPMN-NiNPs to bind to CT-DNA using various techniques such as electronic absorption, fluorescence, viscometric, and cyclic voltammetric. The results showed that the synthesized DPMN-NiNPs exhibited good DNA binding ability, which was further validated by denaturation of DNA using thermal and sonochemical methods. The researchers also investigated the antimicrobial and antioxidant activities of DPMN-NiNPs, which demonstrated better biological activities than DPMN alone. Furthermore, the synthesized nano compounds were found to selectively damage cancer cell lines without harming normal cell lines. Finally, the researchers examined the potential of DPMN-NiNPs as a catalyst in dye degradation by testing its ability to decompose methyl red dye using UV-Visible spectroscopy. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.