Abstract

3, 5, 6-Trichloro-2-pyridinol (TCP) is a stable metabolite of two major pesticides, Chlopyrifos insecticide and Triclopyr herbicide, which are widely used in the world. The potential health hazard associated with TCP is identified due to its high affinity to the DNA molecule. Therefore, in this study, the interaction of native calf thymus DNA with TCP has been investigated using spectrophotometric, circular dichroism (CD), spectrofluorometric, viscometric and voltametric techniques. It was found that TCP molecules could interact with DNA via a groove-binding mode, as evidenced by hyperchromism, with no red shift in the UV absorption band of TCP, no changes in K(b) values in the presence of salt, no significant changes in the specific viscosity and CD spectra of DNA, and a decrease in peak currents with no shift in the voltamogram. In addition, TCP is able to release Hoechst 33258, a strong groove binder, in the DNA solutions. The results are indicative of the groove-binding mode of TCP to DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call