Abstract

Nostoc punctiforme is an example of a filamentous cyanobacterium that is capable of differentiating non-growing cells that constitute gliding filaments termed hormogonia. These gliding filaments serve in short distance dispersal and as infective units in establishing a symbiosis with plants, such as the bryophyte Anthoceros punctatus. Mutants of N. punctiforme exist which show elevated levels of initial infection of A. punctatus as a consequence of repeated cycles of hormogonium differentiation. Such mutations occur within the hrmA and hrmU genes. Further characterization of the hrm locus revealed several genes with an organizational and predicted protein sequence similarity to genes of heterotrophic bacteria that are involved in hexuronic acid metabolism. Genes in the N. punctiforme locus are transcribed in response to the presence of a plant extract containing hormogonium-repressing factors. A predicted transcriptional repressor encoded in the locus, HrmR, was shown herein to be a specific DNA binding protein that regulates the transcription of its own gene and that of hrmE, a nearby gene. The ability of HrmR to bind DNA was abolished upon addition of either galacturonate or lysate from specifically induced N. punctiforme cells, implying that the in vivo HrmR binding activity is modulated via an internal compound, most likely a sugar molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.