Abstract
Fluorescent proteins that also bind DNA molecules are useful reagents for a broad range of biological applications because they can be optically localized and tracked within cells, or provide versatile labels for in vitro experiments. We report a novel design for a fluorescent, DNA-binding protein (FP-DBP) that completely ‘paints’ entire DNA molecules, whereby sequence-independent DNA binding is accomplished by linking a fluorescent protein to two small peptides (KWKWKKA) using lysine for binding to the DNA phosphates, and tryptophan for intercalating between DNA bases. Importantly, this ubiquitous binding motif enables fluorescent proteins (Kd = 14.7 μM) to confluently stain DNA molecules and such binding is reversible via pH shifts. These proteins offer useful robust advantages for single DNA molecule studies: lack of fluorophore mediated photocleavage and staining that does not perturb polymer contour lengths. Accordingly, we demonstrate confluent staining of naked DNA molecules presented within microfluidic devices, or localized within live bacterial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.