Abstract
The antibiotics AT2433-A1 and AT2433-B1 are two indolocarbazole diglycosides related to the antitumor drug rebeccamycin known to stabilize topoisomerase I-DNA complexes. This structural analogy prompted us to explore the binding of four indolocarbazole diglycosides with DNA and their capacity to interfere with the DNA cleavage-reunion reaction catalyzed by topoisomerase I. The molecular basis of the drug interaction with double-stranded DNA and with purified chromatin, with particular emphasis on the role of the carbohydrate moiety, was investigated by means of complementary spectroscopic techniques, including surface plasmon resonance and electric linear dichroism. We compared the DNA binding properties, sequence recognition, and effects on topoisomerase I-mediated DNA relaxation and cleavage of AT2433-A1 bearing a 2,4-dideoxy-4-methylamino-L-xylose residue, its dechlorinated analog AT2433-B1, the diastereoisomer iso-AT2433-B1 with an inverted aminosugar residue, and compounds 5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione, 12-beta-D-glucopyranosyl-12,13-dihydro-6-methyl (JDC-108) and 5H-indolo[2,3-a]pyrrolo[3, 4-c]carbazole-5,7(6H)-dione, 12-(6-O-alpha-D-galacto-pyranosyl-beta-D-glucopyranosyl)-12,13-dihydro-6-methyl (JDC-277) with an uncharged mono- and disaccharide, respectively. The two antibiotics AT2433-A1 and AT2433-B1 proved to be highly cytotoxic to leukemia cells and this may be a consequence of their tight intercalative binding to DNA, preferentially into GC-rich sequences as inferred from DNase I footprinting studies and surface plasmon resonance measurements. Like the diastereoisomer iso-AT2433-B1, they have no inhibitory effect on topoisomerase I, in contrast to the uncharged diglycoside JDC-277, which stimulates DNA cleavage by the enzyme mainly at TG sites, as observed with camptothecin. Cytotoxicity measurements with CEM and CEM/C2 human leukemia cell lines sensitive and resistant to camptothecin, respectively, also suggested that topoisomerase I contributes, at least partially, to the mechanism of action of the neutral diglycoside JDC-277 but not to that of the cationic AT2433 compounds. Together, the results indicate that sequence-selective DNA interaction and topoisomerase I inhibition is controlled to a large extent by the stereochemistry of the diglycoside moiety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.