Abstract
Two water soluble complexes with CoII and CuII ions were synthesized using a novel β-cyclodextrin based azo-functionalized Schiff base as a ligand. The Schiff base and its metal complexes were characterized by different physico-chemical and spectroscopic methods. From the analyses of the experimental data, distorted octahedral geometry has been assigned for both the metal complexes. The binding interactions between the metal complexes and DNA were investigated by means of a thermal denaturation study and viscosity measurements as well as by electronic absorption and fluorescence spectroscopy. The DNA cleavage efficacy of the metal complexes was also studied by agarose gel electrophoresis using pBR DNA. These studies revealed that both the metal complexes followed an intercalative mode of binding to calf thymus (CT)-DNA and also effectively cleaved the supercoiled pBR DNA. The CoII complex, however, more efficiently cleaved CT-DNA than the CuII complex as much as the experimental results are concerned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.