Abstract

In this work, the possibility of preparing a nanoparticle with improved treatment properties was investigated. In this regard, synthesis, characterization, in vitro cytotoxicity and DNA binding of Fe3O4@oleate/oseltamivir magnetic nanoparticles (MNPs) were investigated. Fe3O4 nanoparticles were synthesized via chemical co-precipitation and coated by oleate bilayers. Then, Fe3O4@OA MNPs were functionalized with an antiviral drug (oseltamivir), for better biological applications. The MNPs were subsequently characterized by zeta sizer and Zeta potential measurements, Fourier transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM) analyses. The TEM image demonstrated that average sizes of Fe3O4@OA/oseltamivir MNPs were about 8 nm. The in vitro cytotoxicity of Fe3O4@OA/oseltamivir MNPs was studied against cancer cell lines (MCF-7 and MDA-MB-231) and compared with oseltamivir drug. The results illustrated that Fe3O4@OA/oseltamivir magnetic nanoparticles have better antiproliferative effects on the mentioned cell lines as compared with oseltamivir. Also, in vitro DNA binding studies were done by UV–Vis, circular dichroism, and Fluorescence spectroscopy. The results indicated that Fe3O4@OA/oseltamivir MNPs bound to DNA via groove binding. Moreover, this magnetic nanofluid has potential for magnetic hyperthermia therapy due to magnetic core of its nanoparticles.Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.