Abstract

The polymer–copper(II) complex samples, [Cu(phen)( l-Thr)(BPEI)]ClO 4 · 2H 2O ( l-Thr = l-theronine, phen = 1,10-phenanthroline and BPEI = branched polyethyleneimine), with varying degrees of copper(II) chelate content in the polymer chain, were prepared by ligand substitution method in water–ethanol medium and characterized by Infra-red, UV–Vis, EPR spectral and elemental analysis methods. The binding of these complex samples with calf thymus DNA (CT-DNA) has been investigated by absorption spectroscopy and emission spectroscopy and gel electrophoresis techniques. The experimental results indicate that the polymer–copper(II) complex is an avid DNA binder and the binding constant increased with the increase in amount of copper(II) chelate content in the polymer chain. Besides the electrostatic interaction between a negatively charged DNA molecule and a positively charged polymer–copper(II) complex molecule, other binding modes, such as van der Waals interaction, hydrogen bonding and partial intercalation binding modes may also exist in this system. A sample of polymer–copper(II) complex was tested for its antibacterial and antifungal activity and it was found to have good antibacterial and antifungal activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call