Abstract

Purified Rep (or RepA) protein, a replication initiator of plasmid pSC101, is present almost solely in the dimer form, and its binding activity for the directly repeated sequences (iterons) in the replication origin (ori) is very low. When Rep protein was treated with guanidine hydrochloride followed by renaturation, it was shown to bind to the iterons with very high efficiency. A gel shift experiment suggested that guanidine-treated Rep bound to iterons as a monomer form. The Rep monomer bound noncooperatively to the three iterons and induced bending of the DNA helix axis in the same direction (about 100 degrees ). The configuration of the IHF box that is a binding site of another DNA bending protein IHF, the three iterons and an AT-rich region between these sequences was important for efficient bending of the ori region. Furthermore, a mutant Rep protein (Rep(IHF)) which can support the plasmid replication in IHF-deficient host cells was purified, and it was found that affinity of the Rep(IHF) monomer for iterons was similar to that of wild-type Rep and bent DNA only 14 degrees more strongly than did the wild-type Rep. Rep(IHF)-dependent plasmid replication, however, required both enhancer regions, par and IR-1, in addition to "core ori" as a minimal essential ori, whereas only one of these two enhancers was necessary for wild-type Rep-dependent replication. How Rep(IHF) can support plasmid replication in the absence of IHF is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.