Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, with significant research efforts devoted to identifying new biomarkers for clinical diagnosis and treatment. MicroRNAs have emerged as likely disease regulators and biomarkers for AD, now implicated as having roles in several biological processes related to progression of the disease. In this work, we use the miRacles assay (microRNA activated conditional looping of engineered switches) for single-step detection of AD-related microRNAs. The technology is based on conformationally responsive DNA nanoswitches that loop upon recognition of a target microRNA and report their on/off status through an electrophoretic readout. Unlike many methods, our approach directly detects native microRNAs without amplification or labeling, eliminating the need for expensive enzymes, reagents, and equipment. For known AD-related microRNA miR-107, we demonstrated sensitivity of ∼8 fM, specificity among four similar microRNAs of the same family, and simultaneous multiplexed detection of those four microRNA targets. Toward clinical use, we screened 56 AD-related microRNAs and found four that showed detectable differences between total RNA extracts derived from human healthy and AD brain samples. In the context of AD, this "smart reagent" could facilitate biomarker discovery, accelerate efforts to understand the role of microRNAs in AD, and have clinical potential as a diagnostic or monitoring tool for validated biomarkers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.