Abstract

Aim: To develop and evaluate a DNA-based method for monitoring of MRD in CMLBackground: At present, monitoring of MRD in CML uses RNA and reverse transcription (RT-PCR). This leads to a number of disadvantages, including the potential for RNA degradation, requirement for reverse transcription, difficulty in standardisation and only an indirect relationship between assay result and cell number.Methods: A highly multiplexed, short-range PCR using six BCR primers and a pool of 282 ABL primers was used to amplify across the BCR-ABL translocation breakpoint and was followed by 2–3 rounds of “bottleneck PCR”, a technique recently-developed in our laboratory, which adjusts primer concentration so as to minimise non-specific amplification and facilitate highly multiplexed PCRs. The breakpoint was isolated and sequenced, patient-specific primers were synthesised, and MRD was quantified using 10 μg of DNA and a 3 round nested quantitative PCR incorporating a Taqman probe in the third round. Samples from patients on treatment were divided and assayed both by this technique and by RT-PCR. 10 μg of DNA from a normal individual was used in each assay as a control for non-specificity.Results: The BCR-ABL breakpoint was successfully isolated and sequenced in 28 of the 29 patients studied and MRD was assayed in 38 samples from 24 patients. Follow-up samples from 4 patients were unavailable MRD was detected and measured by both methods in 22 samples, detected and measured only by DNA-PCR in 10 samples and not detected by either method in 6 samples. The limit of detection of RT-PCR was in accord with previous results which indicated it to be a mean decrease of 4.5-logs below baseline. The mean limit of detection of DNA-PCR was an MRD of 7.2 x 10−7. Assay precision was determined by performing independent replicate assays on different days and by different individuals on the 32 samples with MRD detectable by DNA-PCR. The median SD of a single assay was 0.15 log units with the range being 0.00 – 0.64 log units. [Display omitted] ConclusionsMonitoring of MRD by DNA-PCR is feasible in the great majority of patients with CML.In terms of possible clinical benefits, DNA-PCR is more sensitive than RT-PCR, and provides a direct measure of leukemic cell number in the individual patient.Use of DNA rather than RNA simplifies specimen collection and transport. In terms of laboratory benefits, DNA-PCR obviates reverse transcription and inter-laboratory standardisation.The principal disadvantage of the method is the initial cost, although this may be able to be amortised over several assays if monitoring is ongoing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.