Abstract

The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.Electronic supplementary materialThe online version of this article (doi:10.1007/s10482-013-9975-4) contains supplementary material, which is available to authorized users.

Highlights

  • The Amazon area is one of the largest regions on Earth covered with tropical rain forests and is one of theW

  • DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %)

  • Seven isolates CBS 102805, 102806, 102816, 102817 and 102818 from leaf litter decomposing for six months in the mature Pseudomonotes tropenbosii (Dipterocarpaceae) forest in Pena Roja, as well as strains P1-2(25) and P4(166) isolated from 17-month-old litter in a recently cut down forest (P1) and a 30-year-old secondary forest plot (P4) in Araracuara shared highly similar ITS1 and 2 phylotypes and were attributed to section Trichoderma by TrichOKey, but no species identification was obtained

Read more

Summary

Introduction

The Amazon area is one of the largest regions on Earth covered with tropical rain forests and is one of theW. H. Muller Department of Biology, Utrecht University, Utrecht, The Netherlands most biodiverse ecosystems with approximately 60,000 species of vascular plants (Ter Steege et al 2003; Hoorn et al 2010). Fungi play a central role in many ecological processes in forest ecosystems, including decomposition of plant litter and nutrient cycling. In tropical as well as cooler regions, colonization by endophytic and epiphytic phyllosphere fungi occur in early stages of decomposition when the loss of litter mass and chemical changes occur most rapidly (Osono and Takeda 2002). Composition and functioning of soil microbial communities are among the key factors that determine decomposition rates (Couteauxm et al 1995; Hattenschwiler et al 2011). The composition of communities of soil micro-organisms present in the nutrient-poor Amazonian rainforests may strongly impact the decomposition process

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.