Abstract

AbstractFood webs are important in understanding the structure, function, and behaviour of ecosystems, but, due to methodological limitations, are often poorly resolved in ways that impact food-web properties. Although DNA barcoding has proven useful in determining the diet of consumers, few studies have used this technique to determine food-web structure. These studies report mixed impacts on various food-web properties, but are limited by their taxonomic focus and their failure to evaluate DNA barcoding for both diet analysis and food-web structure. In this study, we show that, when compared to a morphological approach, DNA barcoding increases foodweb resolution by increasing the number and frequency of prey species identified in the stomach contents of eight species of Canadian boreal shield predatory fishes. In addition, we observed differences in food-web structure, such as increased generalism, habitat coupling, and omnivory, that have strong implications for food-web stability and dynamics. We conclude that DNA barcoding is a powerful tool to evaluate how resolution impacts foodweb properties and can help further our understanding of how food webs are structured by identifying feeding interactions in an unprecedented and highly detailed manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.