Abstract

DNA barcoding is both an important research and science education tool. The technique allows for quick and accurate species identification using only minimal amounts of tissue samples taken from any organism at any developmental phase. DNA barcoding has many practical applications including furthering the study of taxonomy and monitoring biodiversity. In addition to these uses, DNA barcoding is a powerful tool to empower, engage, and educate students in the scientific method while conducting productive and creative research. The study presented here provides the first assessment of Marine Park (Brooklyn, New York, USA) biodiversity using DNA barcoding. New York City citizen scientists (high school students and their teachers) were trained to identify species using DNA barcoding during a two–week long institute. By performing NCBI GenBank BLAST searches, students taxonomically identified 187 samples (1 fungus, 70 animals and 116 plants) and also published 12 novel DNA barcodes on GenBank. Students also identified 7 ant species and demonstrated the potential of DNA barcoding for identification of this especially diverse group when coupled with traditional taxonomy using morphology. Here we outline how DNA barcoding allows citizen scientists to make preliminary taxonomic identifications and contribute to modern biodiversity research.

Highlights

  • DNA barcoding, or sequence-based specimen identification, was developed by Paul Hebert in 2003 to identify a broad range of taxa by sequencing a standardized short DNA fragment, the “DNA barcode” [1,2]

  • DNA barcodes were previously used to find that five of 23 samples of caviar purchased in New York City (NYC) were mislabeled, including three from threatened sturgeon species [19]

  • DNA barcoding continues to demonstrate its potential as a powerful tool for students to act as citizen scientists to make a real contribution to ecosystem assessment

Read more

Summary

Introduction

DNA barcoding, or sequence-based specimen identification, was developed by Paul Hebert in 2003 to identify a broad range of taxa by sequencing a standardized short DNA fragment, the “DNA barcode” [1,2]. DNA barcoding has many practical applications including identification of fraud in consumer products, furthering the study of taxonomy, and monitoring and accounting for Earth’s biodiversity. In this time of major biodiversity loss, there is a necessity to identify and catalogue organisms to establish the baseline biodiversity. Genetic marketplace monitoring has continued to be a promising tool for detecting fraudulent black caviar present in the NYC area [20]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call