Abstract

Concerns regarding the status of marine ecosystems have increased in part due to traditional and emerging human activities in marine waters, driving a demand for approaches with high sample throughput capability to improve ecosystem monitoring. Nematodes are already used as indicator species in biodiversity assessments and biomonitoring of terrestrial and marine systems, with molecular approaches offering the opportunity to utilize these organisms further in large scale ecological surveys and environmental assessments. Based on an available nematode dataset for estuarine sediments of the Mira estuary (SW coast, Portugal), we evaluated the diversity of the nematode community of this system, using the molecular markers 18S rRNA and COI genes. These approaches were compared to voucher specimens from a morphological characterization of the same samples allowing validation and comparison between nematode communities. The spatial and temporal variability of the density and diversity of the nematode assemblages was analyzed based on morphological characterization to allow the validation and efficiency of the genetic characterization. A PCO ordination plot showed a distinct separation of the assemblages between sampling occasions confirmed by PERMANOVA analysis, which showed significant differences, although no significant differences were detected between sampling sites. The morphological characterization identified 50 genera of which only 26 and 25 distinct 18S rRNA and COI DNA barcodes, respectively, were obtained. 90.2% of the morphologically identified specimens representing eleven different genera, successfully generated DNA barcodes for both 18S rRNA and COI genes. This study confirmed that the success of the 18S rRNA gene PCR amplification is higher than of COI gene with 43 species amplified against 34. The study highlights a limitation of available sequences for both targets in databases when compared to the known diversity of marine nematodes. The gene sequences of this study enriched the databases, contributing gene sequences from 7 and 16 new genera for the 18S rRNA and COI genes, respectively. A robust database of gene sequences is a prerequisite for the development of robust high sample throughput techniques to be applied in marine assessing and monitoring programs.

Highlights

  • Concerns regarding the status of marine ecosystems have increased in part due to traditional and emerging human activities in marine waters, driving development of many methods for the assessment of its ecological status

  • The environmental variables measured in sediment and interstitial water during the sampling occasions showed in average a salinity of 37 and sediment organic matter was in average 7%

  • 50 nematode genera were morphologically identified, and only 26 and 25 DNA barcodes were obtained for the 18S rRNA and c oxidase subunit 1 (COI) genes, respectively, the barcoding of the Mira estuary community was mostly achieved. 90.2% of the nematode assemblages were constituted by eleven nematode genera and DNA barcodes were obtained for both 18S rRNA and COI genes

Read more

Summary

Introduction

Concerns regarding the status of marine ecosystems have increased in part due to traditional and emerging human activities in marine waters, driving development of many methods for the assessment of its ecological status. The primary goal of the Marine Strategy Framework Directive (MSFD) (2008/56/CE) is to achieve or maintain the Good Environmental Status (GES) of European marine waters. The Directive states that GES is achieved when the marine waters provide ecologically diverse and dynamic oceans and seas which are clean, healthy and productive (Article 3). Further development of tools for a rapid evaluation of the marine health status is critical with molecular tools seen as a promising approach to improve ecosystem monitoring providing greater accuracy and throughput than traditional approaches (Bourlat et al, 2013). Genomic analysis has catapulted ecology into a new era, representing, perhaps, the largest source of innovation in marine monitoring techniques

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call