Abstract

Accurate and timely identification of invasive insect pests underpins most biological endeavors ranging from biodiversity estimation to insect pest management. In this regard, identification of thrips, an invasive insect pest is important and challenging due to their complex life cycles, parthenogenetic mode of reproduction, sex and color morphs. In the recent years, DNA barcoding employing 5′ region of the mitochondrial Cytochrome Oxidase I (CO-I) gene has become a popular tool for species identification. In this study, we employed CO-I gene sequences for discriminating 151 species of thrips for the first time. Analyses of the intraspecific and intrageneric distances of the CO-I sequences ranged from 0.0 to 7.91% and 8.65% to 31.15% respectively. This study has revealed the existence of cryptic species in Thrips hawaiiensis (Morgan) (Thysanoptera: Thripidae) and Scirtothrips perseae Nakahara (Thysanoptera: Thripidae) for the first time, along with previously reported cryptic species such as Thrips palmi Karny (Thysanoptera: Thripidae), T. tabaci Lindeman, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), Scirtothrips dorsalis Hood. We are proposing, the feasibility of hosting an independent integrated taxonomy library for thrips and indicate that it can serve as an effective system for species identification, this approach could potentially play a key role in formulating effective insect pest management strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call