Abstract

In this study we report on the sequencing of the COI barcode region from 96 historical specimens (92 type specimens +4 non-types) of Eois. Eois is a diverse clade of tropical geometrid moths and is the target of a number of ongoing studies on life-histories, phylogeny, co-evolution with host plants or parasitoids, and diversity patterns across temporal and spatial dimensions. The unequivocal application of valid names is crucial for all aspects of biodiversity research as well as monitoring and conservation efforts. The availability of barcodes from historical type specimens has the potential to facilitate the much-needed acceleration of species description. We performed non-destructive DNA extraction on the abdomens of Eois specimens between 79 and 157 years of age. We used six primer combinations (recovering between 109 and 130 bp each) to target the full-length barcode sequence of each specimen. We were able to obtain sequences for 91 of 96 specimens (success rate 94.8%). Sequence length ranged from 121 bp to full barcode sequences (658 bp), the average sequence length was ∼500 bp. We detected a moderately strong and statistically significant negative correlation between specimen age and total sequence length, which is in agreement with expectations. The abdomen proved to be an exceedingly valuable source of DNA in old specimens of Lepidoptera. Barcode sequences obtained in this study are currently being used in an effort towards a step-wise taxonomic revision of Eois. We encourage that DNA barcodes obtained from types specimens should be included in all species descriptions and revisions whenever feasible.

Highlights

  • IntroductionSubstantial campaigns to unravel diversity of such tropical arthropods by means of quantitative community-wide samples [1,2] or clarification of trophic relationships [4,5] have largely been confined to the last two decades

  • The moth genus Eois is a significant part of megadiverse assemblages of herbivorous insects in tropical montane forest habitats in Ecuador

  • The use of DNA barcodes in an integrative taxonomy approach lead to an increase of the species count from one single small region by up to 61% depending on the applied species concept. 94% of these taxa could not be unambiguously assigned to described species based on their external morphology

Read more

Summary

Introduction

Substantial campaigns to unravel diversity of such tropical arthropods by means of quantitative community-wide samples [1,2] or clarification of trophic relationships [4,5] have largely been confined to the last two decades. Evaluation of such new samples makes it necessary to assess which of the observed specimens belong to already described species and which represent hitherto unknown lineages

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.