Abstract

For many manufacturing processes, correct mixing compositions are crucial to guarantee product quality. However, the analysis of mixing ratios based on component balances can be challenging and requires extensive infrastructure. DNA barcodes have been previously proposed as low-cost markers for product authenticity, and we show here that the quantification of such barcodes via a quantitative real-time polymerase chain reaction (PCR) enables the determination of mixing ratios in a range of liquid and polymeric products. To enable the distribution of the DNA within the various matrixes, the biochemical is encapsulated in silica nanoparticles and distributed within the matrix of the raw material. If both raw materials of a two-component mixture contain such barcodes, the composition of the mixture can be determined from the relative concentration of the barcodes via multiplex PCR reactions, irrespective of the sampling volume and for a wide range of initial barcode concentrations (10 ppm to 10 ppb). As an application example, we use the barcodes to determine the mixing ratios of cross-linked and multicomponent polysilicon products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.