Abstract

DNA-assisted assembly of ligand-stabilized gold nanoparticles is studied using Monte Carlo simulations with coarse-grained models for DNA and AuNP. Their interaction in a periodic simulation box is described by a combination of electrostatic and pairwise hard core potentials. We first probe the self-assembly of AuNPs resulting in an ordered distribution on a single fixed DNA strand. Subsequently, the effective force calculated between a pair of parallel DNA in the presence of AuNPs shows the attraction between them at short distance associated to a stable equilibrium position. Finally, the osmotic pressure calculated in a compact DNA-AuNP lattice with various amounts of monovalent salt ions shows that an increasing amount of salt prevents aggregate formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.