Abstract

We systematically investigated the impact of the relative maturation levels of dendritic cells (DCs) on their cell surface phenotype, expression of cytokines and chemokines/chemokine receptors (by DNA array and RNase protection analyses), biological activities, and abilities to induce tumor immunity. Mature DCs expressed significantly heightened levels of their antigen-presenting machinery (e.g., CD54, CD80, CD86) and numerous cytokines and chemokines/chemokine receptors (i.e., Flt-3L, G-CSF, IL-1α and -1β, IL-6, IL-12, CCL-2, -3, -4, -5, -17, and -22, MIP-2, and CCR7) and were significantly better at inducing effector T cell responses in vitro. Furthermore, mice vaccinated with tumor peptide-pulsed mature DCs better survived challenge with a weakly immunogenic tumor (8 of 8 survivors) than did mice vaccinated with less mature (3 of 8 survived) or immature (0 of 8 survivors) DCs. Nevertheless, intermediate-maturity DCs expressed substantial levels of Flt-3L, IGF-1, IL-1α and -1β, IL-6, CCL-2, -3, -4, -9/10, -17, and -22, MIP-2, osteopontin, CCR-1, -2, -5, and -7, and CXCR-4. Taken together, our data clearly underscore the critical nature of employing DCs of full maturity for DC-based antitumor vaccination strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call