Abstract

A methodology that allows for the coupling of biology and electronic materials is presented, where double stranded DNA serves as a template for electronic material growth. Self-assembled DNA structures allow for a variety of patterns to be achieved on the nanometer size scale. These DNA architectures allow for feature sizes that are difficult to achieve using conventional patterning techniques. Herein, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described, and these structures are subsequently deposited onto substrates of interest. DNA self assembly under non-aqueous conditions has yet to be presented in literature, and is necessary if unwanted oxidation of certain electronic substrates is to be avoided. Solubilization of the DNA in non-aqueous solvents is achieved by replacing charge stabilizing salts with surfactants. Retention of DNA hierarchical structure under both conditions will be presented by observing the structures using AFM imaging and circular dichroism spectroscopic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.