Abstract

Genetic alphabet expansion of DNA using unnatural base pair systems is expected to provide a wide variety of novel tools and methods. Recent rapid progress in this area has enabled the creation of several types of unnatural base pairs that function as a third base pair in polymerase reactions. Presently, a major topic is whether the genetic alphabet expansion system actually increases nucleic acid functionalities. We recently applied our unnatural base pair system to in vitro selection (SELEX), using a DNA library containing four natural bases and an unnatural base, and succeeded in the generation of high-affinity DNA aptamers that specifically bind to target proteins. Only a few hydrophobic unnatural bases greatly augmented the affinity of the aptamers. Here, we describe a new approach (genetic alphabet Expansion SELEX, ExSELEX), using our hydrophobic unnatural base pair system for high affinity DNA aptamer generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.