Abstract

Recent investigations of the DNA interactions with cationic surfactants and catanionic mixtures are reviewed. Several techniques have been used such as fluorescence microscopy, dynamic light scattering, electron microscopy, and Monte Carlo simulations. The conformational behaviour of large DNA molecules in the presence of cationic surfactant was followed by fluorescence microscopy and also by dynamic light scattering. These techniques were in good agreement and it was possible to observe a discrete transition from extended coils to collapsed globules and their coexistence for intermediate amphiphile concentrations. The dependence on the surfactant alkyl chain was also monitored by fluorescence microscopy and, as expected, lower concentrations of the more hydrophobic surfactant were required to induce DNA compaction, although an excess of positive charges was still required. Monte Carlo simulations on the compaction of a medium size polyanion with shorter polycations were performed. The polyanion chain suffers a sudden collapse as a function of the concentration of condensing agent, and of the number of charges on the polycation molecules. Further increase in the concentration increases the degree of compaction. The compaction was found to be associated with the polycations promoting bridging between different sites of the polyanion. When the total charge of the polycations was lower than that of the polyanion, a significant translational motion of the compacting agent along the polyanion was observed, producing only a small-degree of intrachain segregation, which can explain the excess of positive charges necessary to compact DNA. Dissociation of the DNA–cationic surfactant complexes and a concomitant release of DNA was achieved by addition of anionic surfactants. The unfolding of DNA molecules, previously compacted with cationic surfactant, was shown to be strongly dependent on the anionic surfactant chain length; lower amounts of a longer chain surfactant were needed to release DNA into solution. On the other hand, no dependence on the hydrophobicity of the compacting agent was observed. The structures of the aggregates formed by the two surfactants, after the interaction with DNA, were imaged by cryogenic transmission electron microscopy. It is possible to predict the structure of the aggregates formed by the surfactants, like vesicles, from the phase behaviour of the mixed surfactant systems. Studies on the interactions between DNA and catanionic mixtures were also performed. It was observed that DNA does not interact with negatively charged vesicles, even though they carry positive amphiphiles; however, in the presence of positively charged vesicles, DNA molecules compact and adsorb on their surface. Finally Monte Carlo simulations were performed on the adsorption of a polyelectrolyte on catanionic surfaces. It was observed that the mobile charges in the surface react to the presence of the polyelectrolyte enabling a strong degree of adsorption even though the membrane was globally neutral. Our observations indicate that the adsorption behaviour of the polyelectrolyte is influenced by the response given by the membrane to its presence and that the number of adsorbed beads increases drastically with the increase of flexibility of the polymer. Calculations involving polymers with three different intrinsic stiffnesses showed that the variation is non-monotonic. It was observed also that a smaller polyanion typically adsorbs more completely than the larger one, which indicates that the polarisation of the membrane becomes less facilitated as the degree of disruption increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call