Abstract

The DNA base substitute approach by the (S)-3-amino-1,2-propanediol linker allows placing two fluorophores in a precise way inside a given DNA framework. The double helical architecture around the fluorophores, especially the DNA-induced twist, is crucial for the desired photophysical interactions. Excitonic, excimer, and energy transfer interactions yield fluorescent DNA and RNA probes with dual emission color readout. Especially, our DNA and RNA "traffic light" that combines the green emission of TO with the red emission of TR represents an important tool for molecular imaging and can be applied as aptasensors and as probes to monitor the siRNA delivery into cells. The concept can be extended to the synthetically easier to access postsynthetic 2'-modifications and the NIR range. Thereby, the pool of tailor-made fluorescent nucleic acid conjugates can be extended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.