Abstract

Ferritins, an ancient family of protein nanocages, concentrate iron in iron-oxy minerals for iron-protein biosynthesis and protection against oxy radical damage. Of the two genetic mechanisms that regulate rates of ferritin-L synthesis, DNA transcription and mRNA translation, more is known about mRNA regulation where iron targets complexes of an mRNA structure, the iron-responsive element (IRE) sequence, and ferritin IRE repressors (iron regulatory proteins 1 and 2). Neither the integration of mRNA and DNA regulation nor the ferritin-L DNA promoter are well studied. We now report the combined effects of DNA transcription and mRNA translation regulation of ferritin-L synthesis. First, the promoter of human ferritin-L, encoding the animal-specific subunit associated with human diseases, was identified, and contained an overlapping Maf recognition element (MARE) and antioxidant responsive element (ARE) that was positively regulated by tert-butylhydroquinone, sulforaphane, and hemin with responses comparable to thioredoxin reductase (ARE regulator) or quinone reductase (MARE/ARE regulator). Iron, a poor regulator of the ferritin-L promoter, was 800 times less effective than sulforaphane. Combining the ferritin-L MARE/ARE and IRE produced a response to hemin that was 3-fold greater than the sum of responses of the MARE/ARE or IRE alone. Regulation of ferritin-L by a MARE/ARE DNA sequence emphasizes the importance of ferritin-L in oxidative stress that complements the mRNA regulation in iron stress. Combining DNA and mRNA mechanisms of regulation, as for ferritin-L, illustrates the advantages of using two types of genetic targets to achieve sensitive responses to multiple signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.