Abstract

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTI). UPEC persister bacteria play crucial roles in clinical treatment failure and relapse. Although DNA methylation is known to regulate gene expression, its role in persister formation has not been investigated. Here, we show that Δdam (adenine methylase) mutant from UPEC strain UTI89 had significant defect in persister formation and complementation of the Δdam mutant restored this defect. Using PacBio sequencing of methylome and RNA sequencing of Δdam, we defined, for the first time, the role of Dam in persister formation. We found that Δdam mutation had an overwhelming effect on demethylation of the genome and the demethylation sites affected expression of genes involved in broad transcriptional and metabolic processes. Using comparative COG analysis of methylome and transcriptome, we demonstrate that Dam mediates persister formation through transcriptional control, cell motility, DNA repair and metabolite transport processes. These findings provide the first evidence and molecular basis for DNA methylation mediated persister formation and implicate Dam DNA methylation as a potential drug target for persister bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call