Abstract

The multifunctional molecule 11beta-dichloro consists of a ligand for the androgen receptor linked to a bifunctional alkylating group, permitting it to create DNA adducts that bind the androgen receptor. We propose that binding of the androgen receptor to 11beta-DNA adducts acts to both shield damaged sites from repair and disrupt the expression of genes essential for growth and survival. We investigated the formation 11beta-DNA adducts in tumor xenograft and nontumor tissues in mice. Using [14C]-11beta-dichloro, we show that the molecule remains intact in blood and is widely distributed in mouse tissues after i.p. injection. Covalent 11beta-guanine adducts identified in DNA that had been allowed to react with 11beta-dichloro in vitro were also found in DNA isolated from cells in culture treated with 11beta-dichloro as well as in DNA isolated from liver and tumor tissues of mice treated with the compound. We used accelerator mass spectrometry to determine the levels of [14C]-11beta-DNA adducts in LNCaP cells treated in culture as well as in liver tissue and LNCaP xenograft tumors in treated mice. The level of DNA adducts in tumor tissue was found to be similar to that found in LNCaP cells in culture treated with 2.5 micromol/L 11beta-dichloro. Our results indicate that 11beta-dichloro has sufficient stability to enter the circulation, penetrate tissues, and form DNA adducts that are capable of binding the androgen receptor in target tissues in vivo. These data suggest the involvement of our novel mechanisms in the antitumor effects of 11beta-dichloro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call