Abstract

Green-lipped mussels, Perna viridis, were exposed to 0, 0.3, 3 and 30 μg l −1 (nominal concentrations) B[a]P under laboratory conditions over a period of 24 days. Mussels were collected on day 0, 1, 3, 6, 12, 18 and 24, and the levels of DNA adducts and DNA strand breaks in their hepatopancreas tissues monitored. Mussels exposed to 0.3 and 3 μg l −1 B[a]P showed marked increases in strand breaks after 1 day of exposure. DNA strand break levels in these mussels remained high and significantly different from the control values until day 3 for the 0.3 μg l −1 treatment group, and day 6 for the 3 μg l −1 treatment group. This was followed by a gradual reduction in strand breaks. After 12 days, the levels of both groups had returned to the same level as that of the control. No increase in DNA strand breaks was observable in mussels exposed to 30 μg l −1 B[a]P in the first 12 days of exposure, but a significant increase was observed from day 12 to day 24. Increasing B[a]P concentrations resulted in elevated DNA adduct levels after 3–6 days of exposure, but this pattern of dose-related increase disappeared after 12 days. These results indicate that a better understanding of the complex interactions between exposure levels and durations is crucially important before DNA adduct levels and DNA strand breaks in P. viridis can be used as effective biomarkers for monitoring genotoxicants in marine waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.