Abstract
Poly(methyl methacrylate) (PMMA) is commonly used as acrylic bone cement to fix bone implants. In vivo degradation of bone cement may lead to a decrease in mechanical properties and result in aseptic loosening. Creeping can promote failure of the implant. This study used dynamic mechanical thermal analysis (DMTA) equipment, in the 0.01 to 50 Hz frequency range, to investigate the dynamic viscoelastic relaxation characteristics of CMW™, PROFIT QUIRÚRGICO and PALACOS PMMA-based bone cements. Their initial moduli were measured as 2450, 1850 and 1710 MPa, respectively. Relaxation master curves displayed similar features. The DMTA temperature range was between 20 and 75°C. Predictions for long-term relaxation moduli were analyzed and compared against published experimental data. The comparison revealed that master curves obtain using the time-temperature-superposition principle (TTSP) present a much slower relaxation modulus compared to long-term experimental data above 1000 s. However, extrapolations based on a time-power law applied to isothermal experimental data allow better long-term predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.