Abstract

Two iron transporters, divalent metal transporter1 (DMT1) and ferroportin1 (FPN1) have been identified; however, their role during infancy is unknown. We investigated DMT1, FPN1, ferritin, and transferrin receptor expression, iron absorption and tissue iron in iron-deficient rat pups, iron-deficient rat pups given iron supplements, and controls during early (day 10) and late infancy (day 20). With iron deficiency, DMT1 was unchanged and FPN1 was decreased (-80%) at day 10. Body iron uptake, mucosal iron retention, and total iron absorption were unchanged. At day 20, DMT1 increased fourfold and FPN1 increased eightfold in the low-Fe group compared with controls. Body iron uptake and total iron absorption were increased, and mucosal iron retention was decreased with iron deficiency. Iron supplementation normalized expression levels of the transporters, body iron uptake, mucosal iron retention, and total iron absorption of the low-Fe group to those of controls at day 20. In summary, the molecular mechanisms regulating iron absorption during early infancy differ from late infancy when they are similar to adult animals, indicating developmental regulation of iron absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call