Abstract

DMS emitted into the atmosphere over the global oceans has a range of effects upon atmospheric composition (mediated through various oxidation products) that may be significant with regard to issues as important as climate regulation, and the trace gas oxidation capacity of the marine atmospheric boundary layer. The roles played by DMS oxidation products within these contexts are diverse and complex, and in many instances are not well understood. Here we summarize what is known, and suspected, about the couplings between the marine atmospheric sulfur cycle, other atmospheric chemical cycles, and the dynamics and microphysics of the marine atmospheric boundary layer. This overview focuses heavily on measurements carried out in clean Southern Ocean air masses in association with the Australian Baseline Air Pollution Station located at Cape Grim (40° 40′ 56″S, 144° 41′ 18″ E), Tasmania. The data confirm that in the remote marine atmosphere, DMS is a central player in a variety of important atmospheric processes, reinforcing the need to understand quantitatively the factors that regulate DMS emissions from the ocean to the atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call