Abstract

In this work, we propose a novel depth-induced multi-scale recurrent attention network for RGB-D saliency detection, named as DMRA. It achieves dramatic performance especially in complex scenarios. There are four main contributions of our network that are experimentally demonstrated to have significant practical merits. First, we design an effective depth refinement block using residual connections to fully extract and fuse cross-modal complementary cues from RGB and depth streams. Second, depth cues with abundant spatial information are innovatively combined with multi-scale contextual features for accurately locating salient objects. Third, a novel recurrent attention module inspired by Internal Generative Mechanism of human brain is designed to generate more accurate saliency results via comprehensively learning the internal semantic relation of the fused feature and progressively optimizing local details with memory-oriented scene understanding. Finally, a cascaded hierarchical feature fusion strategy is designed to promote efficient information interaction of multi-level contextual features and further improve the contextual representability of model. In addition, we introduce a new real-life RGB-D saliency dataset containing a variety of complex scenarios that has been widely used as a benchmark dataset in recent RGB-D saliency detection research. Extensive empirical experiments demonstrate that our method can accurately identify salient objects and achieve appealing performance against 18 state-of-the-art RGB-D saliency models on nine benchmark datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.