Abstract

Multiview clustering (MVC) has recently been the focus of much attention due to its ability to partition data from multiple views via view correlations. However, most MVC methods only learn either interfeature correlations or intercluster correlations, which may lead to unsatisfactory clustering performance. To address this issue, we propose a novel dual-correlated multivariate information bottleneck (DMIB) method for MVC. DMIB is able to explore both interfeature correlations (the relationship among multiple distinct feature representations from different views) and intercluster correlations (the close agreement among clustering results obtained from individual views). For the former, we integrate both view-shared feature correlations discovered by learning a shared discriminative feature subspace and view-specific feature information to fully explore the interfeature correlation. This allows us to attain multiple reliable local clustering results of different views. Following this, we explore the intercluster correlations by learning the shared mutual information over different local clusterings for an improved global partition. By integrating both correlations, we formulate the problem as a unified information maximization function and further design a two-step method for optimization. Moreover, we theoretically prove the convergence of the proposed algorithm, and discuss the relationships between our method and several existing clustering paradigms. The experimental results on multiple datasets demonstrate the superiority of DMIB compared to several state-of-the-art clustering methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.