Abstract

Dimethoxyethyl phthalate (DMEP) is an environmental endocrine disruptor. However, research into the underlying mechanisms of DMEP mitochondrial toxicity is still in its infancy. We therefore expect to understand whether DMEP induced mitochondrial damage in HepG2 cells and the associated signaling pathways. DMEP (0.125, 0.25, 0.5, 1 and 2 mM) exposure for 48 h induced a notable increment in reactive oxygen species (ROS), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate transaminase (AST) and 8-hydroxydeoxyguanosine (8-OHdG) in hepG2 cells, resulting in cellular oxidative stress. Low doses of DMEP upregulated nuclear factor E2-related factor 2 (Nrf2) and downstream protein haeme oxygenase-1 (HO-1) levels and high doses down-regulated their levels. Nrf2 levels increased after ROS scavenging by N-acetyl-L-cysteine (NAC), which indicated that the Nrf2 pathway may be affected by oxidative stress. We also found that DMEP decreased ATP content, mitochondrial copy number (mtDNA), translocase of the outer membrane subunit 20 (TOM20) expression, mitochondria-encoded genes CO1, CO2, CO3, ATP6, ATP8 expression, inhibited mitochondrial biogenesis pathway, down-regulated sirtuin 1(SIRT1), PPAR gamma co-activator 1 alpha (PGC-1α), Nuclear respiratory factor 1(Nrf1), Mitochondrial transcription factor A (TFAM) content and activated PINK1/Parkin autophagy pathway. DMEP also activated the mitochondrial apoptotic pathway, causing cytochrome c cytoplasmic translocation and caspase 3 cleavage. What’s more, DMEP activated the Nuclear factor-κB (NF-κB) pathway and levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly upregulated, causing an inflammatory response. In summary, DMEP can cause inflammatory response and oxidative stress in HepG2 cells, inhibited the Nrf2 pathway and mitochondrial biogenesis, and induced autophagy and apoptosis. And oxidative stress at least partially affected the Nrf2 pathway and mitochondrial biogenesis SIRT1/PGC-1α pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call