Abstract

The Digital Micromirror Device (DMD) developed by Texas Instruments (TI) has made tremendous progress in both performance and reliability since it was first invented in 1987. From the first working concept of a bistable mirror, the DMD is now providing high-brightness, high-contrast, and high-reliability in over 1,500,000 projectors using Digital Light Processing technology. In early 2000, TI introduced the first DMD chip with a smaller mirror (14-micron pitch versus 17-micron pitch). This allowed a greater number of high-resolution DMD chips per wafer, thus providing an increased output capacity as well as the flexibility to use existing package designs. By using existing package designs, subsequent DMDs cost less as well as met our customers' demand for faster time to market. In recent years, the DMD achieved the status of being a commercially successful MEMS device. It reached this status by the efforts of hundreds of individuals working toward a common goal over many years. Neither textbooks nor design guidelines existed at the time. There was little infrastructure in place to support such a large endeavor. The knowledge we gained through our characterization and testing was all we had available to us through the first few years of development. Reliability was only a goal in 1992 when production development activity started; a goal that many throughout the industry and even within Texas Instruments doubted the DMD could achieve. The results presented in this paper demonstrate that we succeeded by exceeding the reliability goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call