Abstract

Mechanosensory or chemosensory activation of glutamatergicASH amphid sensory neurons promotes avoidancebehaviors in C. elegans. Wormswith mutations in the transcription factor DMD-10 have impaired ASH-mediated sensorimotor reflexes. We hypothesized that the behavioral dysfunction in dmd-10 mutants could arise from impaired ASH development or survival leading to disrupted glutamatergic signaling.To test this, we performed in vivo fluorescence microscopy of young adult C. elegans amphid neurons after labeling with the lipophilic dye DiI. We quantified the number of ASH neurons as well as five other amphid sensory neuron pairs. We found that the number of amphid neurons in dmd-10 mutants was the same as in wild-type worms. Our results suggest that dmd-10 is not required for amphid neuron development or survival in mature C. elegans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.