Abstract

Recent works imply that the channel pruning can be regarded as searching optimal sub-structure from unpruned networks. However, existing works based on this observation require training and evaluating a large number of structures, which limits their application. In this paper, we propose a novel differentiable method for channel pruning, named Differentiable Markov Channel Pruning (DMCP), to efficiently search the optimal sub-structure. Our method is differentiable and can be directly optimized by gradient descent with respect to standard task loss and budget regularization (e.g. FLOPs constraint). In DMCP, we model the channel pruning as a Markov process, in which each state represents for retaining the corresponding channel during pruning, and transitions between states denote the pruning process. In the end, our method is able to implicitly select the proper number of channels in each layer by the Markov process with optimized transitions. To validate the effectiveness of our method, we perform extensive experiments on Imagenet with ResNet and MobilenetV2. Results show our method can achieve consistent improvement than state-of-the-art pruning methods in various FLOPs settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.