Abstract

AbstractA hybrid conformational search algorithm (DMC) is described that combines a modified form of molecular dynamics with Metropolis Monte Carlo sampling, using the COSMIC(90) force field. Trial configurations are generated by short bursts of high‐temperature dynamics in which the initial kinetic energy is focused into single bond rotations or alternatively into “corner‐flapping” motions in ring systems. Constant temperature and simulated annealing search protocols have been applied to the conformational analysis of several model hydrocarbons (cyclopentane, cyclohexane, cycloheptane, cyclooctane, cycloheptadecane, decane, and tetradecane), and the performance compared with conventional molecular dynamics and Monte Carlo sampling methods. Optimum Metropolis sampling temperatures have been determined and range from 1000–2000 K for acyclic molecules to 3000 K for cyclic systems. Simulated annealing runs are most successful at locating the global minimum when cooling slowing from these optimum temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.