Abstract

Neuronal circuits integrating Parvalbumin-positive GABAergic inhibitory interneurons (PV) are essential for normal brain function and are often altered in psychiatric conditions. During development, Dlx5 and Dlx6 (Dlx5/6) genes are involved in the differentiation of PV-interneurons. In the adult, Dlx5/6 continue to be expressed at low levels in most telencephalic GABAergic neurons, but their importance in determining the number and distribution of adult PV-interneurons is unknown. Previously, we have shown that targeted deletion of Dlx5/6 in mouse GABAergic neurons (Dlx5/6VgatCre mice) results in altered behavioural and metabolic profiles. Here we evaluate the consequences of targeted Dlx5/6 gene dosage alterations in adult GABAergic neurons. We compare the effects on normal brain of homozygous and heterozygous (Dlx5/6VgatCre and Dlx5/6VgatCre/+ mice) Dlx5/6 deletions to those of Dlx5 targeted overexpression (GABAergicDlx5/+ mice). We find a linear correlation between Dlx5/6 allelic dosage and the density of PV-positive neurons in the adult prelimbic cortex and in the hippocampus. In parallel, we observe that Dlx5/6 expression levels in GABAergic neurons are also linearly associated with the intensity of anxiety and compulsivity-like behaviours. Our findings reinforce the notion that regulation of Dlx5/6 expression is involved in individual cognitive variability and, possibly, in the genesis of certain neuropsychiatric conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.