Abstract
The enzyme turnover rate, ${k}_{cat}$, quantifies enzyme kinetics by indicating the maximum efficiency of enzyme catalysis. Despite its importance, ${k}_{cat}$ values remain scarce in databases for most organisms, primarily because of the cost of experimental measurements. To predict ${k}_{cat}$ and account for its strong temperature dependence, DLTKcat was developed in this study and demonstrated superior performance (log10-scale root mean squared error = 0.88, R-squared = 0.66) than previously published models. Through two case studies, DLTKcat showed its ability to predict the effects of protein sequence mutations and temperature changes on ${k}_{cat}$ values. Although its quantitative accuracy is not high enough yet to model the responses of cellular metabolism to temperature changes, DLTKcat has the potential to eventually become a computational tool to describe the temperature dependence of biological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.