Abstract

The enzyme turnover rate, ${k}_{cat}$, quantifies enzyme kinetics by indicating the maximum efficiency of enzyme catalysis. Despite its importance, ${k}_{cat}$ values remain scarce in databases for most organisms, primarily because of the cost of experimental measurements. To predict ${k}_{cat}$ and account for its strong temperature dependence, DLTKcat was developed in this study and demonstrated superior performance (log10-scale root mean squared error = 0.88, R-squared = 0.66) than previously published models. Through two case studies, DLTKcat showed its ability to predict the effects of protein sequence mutations and temperature changes on ${k}_{cat}$ values. Although its quantitative accuracy is not high enough yet to model the responses of cellular metabolism to temperature changes, DLTKcat has the potential to eventually become a computational tool to describe the temperature dependence of biological systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call