Abstract
Perception is an essential task for self-driving cars, but most perception tasks are usually handled independently. We propose a unified neural network named DLT-Net to detect drivable areas, lane lines, and traffic objects simultaneously. These three tasks are most important for autonomous driving, especially when a high-definition map and accurate localization are unavailable. Instead of separating tasks in the decoder, we construct context tensors between sub-task decoders to share designate influence among tasks. Therefore, each task can benefit from others during multi-task learning. Experiments show that our model outperforms the conventional multi-task network in terms of the task-wise accuracy and the overall computational efficiency, in the challenging BDD dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.