Abstract

Unmanned aerial vehicle maritime search and rescue target detection is susceptible to external factors, which can seriously reduce detection accuracy. To address these challenges, the DLSW-YOLOv8n algorithm is proposed combining Deformable Large Kernel Net (DL-Net), SPD-Conv, and WIOU. Firstly, to refine the contextual understanding ability of the model, the DL-Net is integrated into the C2f module of the backbone network. Secondly, to enhance the small target characterization representation, a spatial-depth layer is used instead of pooling in the convolution module, and an additional detection head is integrated into the low-level feature map. The loss function is improved to enhance small target localization performance. Finally, a UAV maritime target detection dataset is employed to demonstrate the effectiveness of the proposed algorithm, whose results show that DLSW-YOLOv8n achieves a detection accuracy of 79.5%, which represents an improvement of 13.1% compared to YOLOv8n.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.