Abstract

For many applications in wireless sensor network (WSN), the gathering of the holistic sensor measurements is difficult due to stringent constraint on network resources, frequent link, indeterminate variations in sensor readings, and node failures. As such, sensory data extraction and prediction technique emerge to exploit the spatio-temporal correlation of measurements and represent samples of the true state of the monitoring area at a minimal communication cost. In this paper, we present DLRDG strategy, a distributed linear regression-based data gathering framework in clustered WSNs. The framework can realize the approximate representation of original sensory data by less than a prespecified threshold while significantly reducing the communication energy requirements. Cluster-head (CH) nodes in WSN maintain linear regression model and use historical sensory data to perform estimation of the actual monitoring measurements. Rather than transmitting original measurements to sink node, CH nodes communicate constraints on the model parameters. Relying on the linear regression model, we improved the CH node function of representative EADEEG (an energy-aware data gathering protocol for WSNs) protocol for estimating the energy consumption of the proposed strategy, under specific settings. The theoretical analysis and experimental results show that the proposed framework can implement sensory data prediction and extracting with tolerable error bound. Furthermore, the designed framework can achieve more energy savings than other schemes and maintain the satisfactory fault identification rate on case of occurrence of the mutation sensor readings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.