Abstract

One of the greatest challenges in multiple myeloma (MM) treatment is to overcome drug resistance. Many pathways are involved including Notch signaling. Notch receptors are expressed by MM cells and Notch ligand Dll1 is present on bone marrow (BM) stromal cells. In this study, we demonstrate that Dll1 can activate Notch signaling mostly through Notch2 receptor and can contribute to drug resistance to bortezomib, both in murine and human MM cells. Blocking the Notch pathway by DAPT (gamma secretase inhibitor) could reverse this effect and increased sensitivity to bortezomib. We describe the upregulation of CYP1A1, a Cytochrome P450 enzyme involved in drug metabolism, as a possible mechanism of Dll1/Notch induced bortezomib resistance. This was confirmed by inhibition experiments using α-Naphthoflavone or CYP1A1-siRNA that resulted in an increased sensitivity to bortezomib. In addition, in vivo data showed that combination treatment of DAPT with bortezomib was able to increase bortezomib sensitivity and prolonged overall survival in the 5T33MM mouse model. Our data provide a potential strategy to overcome bortezomib resistance by Notch inhibition in MM therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.