Abstract

A long body of research work has led to the conjecture that highly efficient IO processing at user-level would necessarily violate protection. In this paper, we debunk this myth by introducing DLibOS a new paradigm that consists of distributing a library OS on specialized cores to achieve performance and protection at the user-level. Its main novelty consists of leveraging network-on-chip to allow hardware message passing, rather than context switches, for communication between different address spaces. To demonstrate the feasibility of our approach, we implement a driver and a network stack at user-level on a Tilera many-core machine. We define a novel asynchronous socket interface and partition the memory such that the reception, the transmission and the application modify isolated regions. Our high performance results of 4.2 and 3.1 million requests per second obtained on a webserver and the Memcached applications, respectively, confirms the relevance of our design decisions. Finally, we compare DLibOS against a non-protected user-level network stack and show that protection comes at a negligible cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.