Abstract

Blood is responsible for delivering nutrients to various organs, which store important health information about the human body. Therefore, the diagnosis of blood can indirectly help doctors judge a person's physical state. Recently, researchers have applied deep learning (DL) to the automatic analysis of blood cells. However, there are still some deficiencies in these models. To cope with these issues, we propose a novel network for the multi-classification of blood cells, which is called DLBCNet. A new specifical model for blood cells (BCGAN) is designed to generate synthetic images. The pre-trained ResNet50 is implemented as the backbone model, which serves as the feature extractor. The extracted features are fed to the proposed ETRN to improve the multi-classification performance of blood cells. The average accuracy, average sensitivity, average precision, average specificity, and average f1-score of the proposed model are 95.05%, 93.25%, 97.75%, 93.72%, and 95.38%, accordingly. The performance of the proposed model surpasses other state-of-the-art methods in reported classification results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.