Abstract
An efficient convolution neural network (CNN) plays a crucial role in various visual tasks like object classification or detection, etc. The most common way to construct a CNN is stacking the same convolution block or complex connection. These approaches may be efficient but the parameter size and computation (Comp) have explosive growth. So we present a novel architecture called “DLA+”, which could obtain the feature from the different stages, and by the newly designed convolution block, could achieve better accuracy, while also dropping the computation six times compared to the baseline. We design some experiments about classification and object detection. On the CIFAR10 and VOC data-sets, we get better precision and faster speed than other architecture. The lightweight network even allows us to deploy to some low-performance device like drone, laptop, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.