Abstract

In coordination with the ppGpp alarmone, the RNA polymerase regulatory protein DksA controls the stringent response of eubacteria, negatively regulating transcription of translational machinery and directly activating amino acid promoters and de novo amino acid biosynthesis. Given the effects of nitric oxide (NO) on amino acid biosynthetic pathways and the intimate relationship of DksA with amino acid synthesis and transport, we tested whether DksA contributes to the resistance of Salmonella to reactive nitrogen species (RNS). Our studies show that the zinc finger predicted to position DksA in the secondary channel of the RNA polymerase is essential for the resistance of Salmonella enterica serovar Typhimurium to RNS in a murine model of systemic salmonellosis. Despite exhibiting auxotrophies for various amino acids, ΔdksA mutant Salmonella strains regain virulence in mice lacking inducible NO synthase (iNOS). DksA is also important for growth of this intracellular pathogen in the presence of NO congeners generated by iNOS during the innate response of murine macrophages. Accordingly, dksA mutant Salmonella strains are hypersusceptible to chemically generated NO, a phenotype that can be prevented by adding amino acids. The DksA-dependent antinitrosative defenses do not rely on the Hmp flavohemoprotein that detoxifies NO to NO(3)(-) and appear to operate independently of the ppGpp alarmone. Our investigations are consistent with a model by which NO produced in the innate response to Salmonella exerts considerable pressure on amino acid biosynthesis. The cytotoxicity of NO against Salmonella amino acid biosynthetic pathways is antagonized in great part by the DksA-dependent regulation of amino acid biosynthesis and transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.