Abstract

BACKGROUND: An efficient deep convolutional neural network (DeepCNN) is proposed in this article for the classification of Covid-19 disease. OBJECTIVE: A novel structure known as the Pointwise-Temporal-pointwise convolution unit is developed incorporated with the varying kernel-based depth wise temporal convolution before and after the pointwise convolution operations. METHODS: The outcome is optimized by the Slap Swarm algorithm (SSA). The proposed Deep CNN is composed of depth wise temporal convolution and end-to-end automatic detection of disease. First, the datasets SARS-COV-2 Ct-Scan Dataset and CT scan COVID Prediction dataset are preprocessed using the min-max approach and the features are extracted for further processing. RESULTS: The experimental analysis is conducted between the proposed and some state-of-art works and stated that the proposed work effectively classifies the disease than the other approaches. CONCLUSION: The proposed structural unit is used to design the deep CNN with the increasing kernel sizes. The classification process is improved by the inclusion of depth wise temporal convolutions along with the kernel variation. The computational complexity is reduced by the introduction of stride convolutions are used in the residual linkage among the adjacent structural units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call